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Denote by fli = cos( iJr/n), i = 0, ..., n the extreme points of the Chebyshev polyno­
mial Tn(x) = cos(n arc cos x). Let Jr n be the set of real algebraic polynomials of
degree not exceeding n, and let Bn be the unit ball in the space 11n equipped with
the discrete norm IPln. x := maxo" i"n Ip(fli ll. We prove that the unique solutions
of the extremal problems maxpEB, J'--, [p'k + "(X»)2 (1 - X2)k-I/2 dx, k = 0, ... , n - I,

and maxpE BJ'-I [p 'k + 2'(X»)2 (I - X2)k .. 1/2 dx, k = 0, ..., n - 2, are p(x) = ± Tn(x),

and we obtain the extremal values in an explicit form. Ii' 1995 Academic Press. Inc.

1. INTRODUCTION

Let II . II.'X be the uniform norm on [ - 1, 1]. In 1941 Duffin and Schaeffer
[2] proved that if PEEn then

k= 1, ... , n, (1)

and the bounds are attained only for p = ± Tn' This result is a refinement
of a theorem of Markov [3] who proved (l) under the stronger require­
ment IlpL ~ 1.

Let 11/11,,:= [J~1 I/(x)I" dx] II", 1~ q < 00. It was proved in [1] that for
any q, 1~q< 00, and every pEnn:

(2)
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In this paper we establish a weighted analogue of (I) and (2) for q = 2
in the sense that the L 2 norms ofp1kl, k = I, ..., n, for some specific weights
are compared with the 1·1,.. 'Y. norm of p. The result reads as follows.

THEOREM I. For every p E 1T.,. the inequalities

1T.n 2 (n+k)! 7

~2k+ I (n-k-I)! Ipl~.x,

and

k = 0, ... , n - I, (3)

21T.n
2

(n+k+l)!(n 2-(k+2)2 ) 7

~ (2k + 1)(2k + 3) (n-k -2)! 2k + 5 + k + 1 Ipl~.y.,

k=0, ... ,n-2, (4)

hold. Equalities are attained if and only if p(x) = cT,.(x), where c is an
arbitrary real constant.

Note that in the particular case k =°inequality (4) is due to Varma [6].
Actually, it was proved in [6, Theorem 2] that if p E 1T.,. and II p IIYe ~ I then

2. PROOF

The proof of the theorem is preceded by three lemmas. The first one
summarizes Lemmas I and 4 and Theorem 3 in [2].

LEMMA 1. Let pEn,. and IPln.x ~ 1. Then the inequalities

Ip(k)( ± 1)1 ~ IT~k)( ± 1)1

n 2(n 2_ 12) ... (n 2_ (k _ 1)2)

1.3· .. (2k-l)
k =0, ... , n, (5 )
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whenever T~kl(X;) = 0, k=O, ... ,n-l,

(6)

hold with equalities only for p = ± Tn"

Lemma 2 concerns Gaussian and generalized Lobatto quadrature
formulae associated with the Gegenbauer weight functions w;.(x):=
(I - x2 );. - 1/2 for nonnegative integer values of A.. Let C:;, n = 0, I, ... ;
A> -1/2, be the Gegenbauer polynomials, orthogonal on [-1, I] with
respect to w;., and let x~:'J;' i = 1, ..., n, be the zeros of C~. By J.1.~.;',; we mean
the Cotes numbers of the Gaussian quadrature formula

r f(x) w;.(x) dx::::; f Ill.;'J:f(x~:·~),
-1 ;= 1

associated with w;., which has the algebraic degree of precision 2n - I.
For every pair of natural numbers I and n there exists a unique

quadrature rule of the form

I I-If f(x)wAx)dx::::; I a)}"I,n)(fU)(-I)+(-I)jfU)(I))
-1 j~O

"+ L Ili()..' I, n )f(x;)
i= J

=: Q(f; ;., I, n),

which is precise for every polynomial of degree 2n +2/- I. It is called the
generalized Lobatto quadrature formula. It is easily seen that a)A, I, n) > 0
and

The nodes of Q(f; .Ie, I, n) are located at the zeros of C ~ + I; i.e.,

(7)

i= I, ... , n. (8)

LEMMA 2. For any given nand k, O~k~n, let ¢:.k,:, i=I, ...,n-k, he
the zeros of T~k). Then the quadrature formulae
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1 n-kf f(x) Wk(X) dx ~ L: J..I.~.k,~ _kf(f,~.k,~),
-I j~1

O~k~n-I, (9)

r f(X)Wk(x)dx~ao(k, I,n-k-I)(/(-I)+f(I))
-I

n-k-l
+ I J..I.j(k, 1, n-k-I)f(~;\+l)),

;= J

and

r f(x) wk(x) dx ~ao(k, 2, n -k -2)(/( -1) +f(I))
-I

+al(k, 2, n -k - 2)(f'( -1) - f'( 1))

n-k-2

+ I J..I.j(k,2,n-k-2)f(f,~~n+21),
;=1

have algebraic degree of precision 2n - 2k - 1. Moreover,

o~k ~n -2,

(10)

0~k~n-3,

(11 )

(n-k-l)l
ao(k,l,n-k-l)=22k-I(2k+I)T2(k+I/2) k' (12)

(n + )!

and

_ 2k, 2( 3)(n-k-2)!
a 1(k, 2, n - k - 2) - 2 (2k + 3) T k + 2: (n + k + I)! '

k 2 -k-2 _al(k,2,n-k-2)
ao( , , n ) - 2k + 1

(
2(n 2- (k + 2)2)(2k + 3)k)

x 2k + 5 + 4( + 1) .

(13 )

(14)

Proof It is well known that Tn' n = 0, 1, ..., are orthogonal on [ -1, 1]
with respect to w o(.\") = (1_X 2 )-1/2. Hence Tn(x) = C 1C~(x) (here and
in what follows by C i we mean nonzero constants). On the other hand
[5, Chap. 4.7],



WEIGHTED MARKOV INEQUALITIES

and then

d
k

C)·() C A+ k()-dk "X =C3 ,,-k X .
X

Applying the latter for A=O we get T;,k\X)=C4 C:_ k(X), which yields

179

i= I, ... , n -k. (15)

Therefore, ¢;~~, i = I, ... , n - k, are the nodes of the Gaussian quadrature
with n - k nodes associated with Wk'

Taking into account the relation (8) between the nodes of the Gaussian
and Lobatto's rules and applying (15) for k + I we conclude that Lobatto's
formula associated with 0h has ¢;~,,+ II for its inside nodes. Thus (10)
coincides with Q(f; k, I, n - k - I). Similarly, the inside nodes of
Q(f; k, 2, n - k - 2) are the zeros ¢;k,,+ 2 1, i = I, ..., n - k - 2, of T~,k + 2).

Explicit expressions for the coefficients a'_1 and a'_2 are given by
Maskell and Sack [4, (3.9), (3.10)] even for generalized Lobato quad­
rature formulae associated with Jacobi weight functions.

LEMMA 3. For any positive integer n lve have

fl (k I) 0 Ok 10 lUI
2 (n+k)!

[T" + (x)]-(l-:c) - i~dx=-- ,
-I 2k+l(n-k-I)!

k=O, ... ,n-l, (16)

and

.1j [T~,k+21(x)r(1-x2)k-li2dx
-I

21rn2 (n+k+ I)! (n 2 -(k+2)2 k )
=(2k+I)(2k+3)(n-k-2)! 2k+5 + +1,

k = 0, ..., n - 2. (17 )

Proof Lobatto's formula (10) IS precise for f = [T~k + I) F Hence by
means of (5) and (12) we get

,.1

J [T~;+II(x)r(l-x2)k-I/2dx
-I
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Using the recurrence relation for the gamma function and F(!) = fi we
obtain (16 l.

In order to establish (17) we apply ( II ) to f = [ T~,k + 2 \] 2 :

f' [T~,k+2I(x)]2 (l_x2)k- l i2dx
-I

= 2ao(k, 2, n -k - 2)[ T~k+2)( I )]2

+ 2a l (k, 2, n - k - 2)[ T~k + ZI( -I ) T:,k + 31( - I )

- T;,k + Z)( I ) T~,k + 3)( I )]

= 2ao(k, 2, n - k - 2)[ T~k+2I(l)f

-4a l (k, 2, n - k - 2) T;,k+Z)( I) T;,k+3)( 1).

From r;;+3I(l)=«n z -(k+2)2)/(2k+5)) T;,k+2 I(l) and (14) we get

I
J [T;,k+Z)(X)]Z (I_X2)k-li2 dx
-I

= 2adk, 2, n -k -2)[ T;,k+2 1
( I)f

xl_I _(2(n
2
-(k+2 lZ )(2k+3) 4k I )_2

n2
-(k+2fj

2k+1 2k+5 + ( + ) 2k+5

\k+21 2l n
2
_(k+2)2 k+1 J

=8a ,(k,2,n-k-2)[Tn (1)] (2k+I)(2k+5)+2k+I'

The formulae (13) and (5) yield (17).

Proof of the theorem. Let p E Bn' Then the inequalities (6) are
equivalent to

i=I, ...,n-k. (18 )

Since [plk+llfE1rZn_2k_2, (9) has algebraic degree of precision
2n - 2k - I and the Cotes numbers are positive, then

I n-k
J [plk+II(X)fwk(X)dx= L l<k2_k[ik+'I(¢"~:D]Z
-I i~ I

n-k
~ '/11kl [Tlk+I)(flkl )]2-.....;;; L... t. 11 - k II "=',. n)

i~1

= r [T;;+ l)(x)f Wk(X) dx.
-I

Now inequalities (3) follow from (16).
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pEB",

can be established in a similar way. One applies (10) to [pik + 21] 2 and
then, having in mind (7) and (12), use (18) for k+ I and (5) for k+2,
respectively.
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