Markov Inequalities for Weight Functions of Chebyshev Type*

Dimitar K. Dimitrov

Mathematical Institute, University of St. Andrews, St. Andrews KY16 9SS, Scotland ${ }^{\dagger}$
Communicated by Manfred v. Golitschek
Received April 14, 1994; accepted in revised form November 26, 1994

Denote by $\eta_{i}=\cos (i \pi / n), i=0, \ldots, n$ the extreme points of the Chebyshev polynomial $T_{n}(x)=\cos (n \arccos x)$. Let π_{n} be the set of real algebraic polynomials of degree not exceeding n, and let B_{n} be the unit ball in the space π_{n} equipped with the discrete norm $|p|_{n, x}:=\max _{0 \leqslant i \leqslant n}\left|p\left(\eta_{i}\right)\right|$. We prove that the unique solutions of the extremal problems $\max _{p \in B_{n}} \int_{-1}^{1}\left[p^{1 k+1)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x, k=0, \ldots, n-1$. and $\max _{p \in B_{n}} \int_{-1}^{1}\left[p^{1 k+2)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x, k=0, \ldots, n-2$, are $p(x)= \pm T_{n}(x)$, and we obtain the extremal values in an explicit form. 1995 Academic Press, Inc.

1. Introduction

Let $\|\cdot\|_{x}$ be the uniform norm on $[-1,1]$. In 1941 Duffin and Schaeffer [2] proved that if $p \in B_{n}$ then

$$
\begin{equation*}
\left\|p^{(k)}\right\|_{\infty} \leqslant \frac{n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right)}{1.3 \cdots(2 k-1)}, \quad k=1, \ldots, n \tag{1}
\end{equation*}
$$

and the bounds are attained only for $p= \pm T_{n}$. This result is a refinement of a theorem of Markov [3] who proved (1) under the stronger requirement $\|p\|_{\infty} \leqslant 1$.

Let $\|f\|_{q}:=\left[\int_{-1}^{1}|f(x)|^{q} d x\right]^{1 / q}, 1 \leqslant q<\infty$. It was proved in [1] that for any $q, 1 \leqslant q<\infty$, and every $p \in \pi_{n}$:

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{q} \leqslant\left\|T_{n}^{\prime}\right\|_{q}\|p\|_{\infty} . \tag{2}
\end{equation*}
$$

[^0]In this paper we establish a weighted analogue of (1) and (2) for $q=2$ in the sense that the L_{2} norms of $p^{(k)}, k=1, \ldots, n$, for some specific weights are compared with the $|\cdot|_{n, \alpha}$ norm of p. The result reads as follows.

Theorem 1. For every $p \in \pi_{n}$ the inequalities

$$
\begin{align*}
& \int_{-1}^{1}\left[p^{(k+1)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x \\
& \quad \leqslant \frac{\pi n^{2}}{2 k+1} \frac{(n+k)!}{(n-k-1)!}|p|_{n, \infty}^{2}, \quad k=0, \ldots, n-1, \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{-1}^{1}\left[p^{(k+2)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x \\
& \leqslant \frac{2 \pi n^{2}}{(2 k+1)(2 k+3)} \frac{(n+k+1)!}{(n-k-2)!}\left(\frac{n^{2}-(k+2)^{2}}{2 k+5}+k+1\right)|p|_{n, x}^{2}, \\
& k=0, \ldots, n-2, \tag{4}
\end{align*}
$$

hold. Equalities are attained if and only if $p(x)=c T_{n}(x)$, where c is an arbitrary real constant.

Note that in the particular case $k=0$ inequality (4) is due to Varma [6]. Actually, it was proved in [6, Theorem 2] that if $p \in \pi_{n}$ and $\|p\|_{\infty} \leqslant 1$ then

$$
\int_{-1}^{1}\left[p^{\prime \prime}(x)\right]^{2}\left(1-x^{2}\right)^{-1 / 2} d x \leqslant \int_{-1}^{1}\left[T_{n}^{\prime \prime}(x)\right]^{2}\left(1-x^{2}\right)^{-1 / 2} d x
$$

2. Proof

The proof of the theorem is preceded by three lemmas. The first one summarizes Lemmas 1 and 4 and Theorem 3 in [2].

Lemma 1. Let $p \in \pi_{n}$ and $|p|_{n, \infty} \leqslant 1$. Then the inequalities

$$
\begin{align*}
\left|p^{(k)}(\pm 1)\right| & \leqslant\left|T_{n}^{(k)}(\pm 1)\right| \\
& =\frac{n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k-1)^{2}\right)}{1.3 \cdots(2 k-1)}, \quad k=0, \ldots, n, \tag{5}
\end{align*}
$$

and
$\left|p^{(k+1)}\left(x_{i}\right)\right| \leqslant\left|T_{n}^{(k+1)}\left(x_{i}\right)\right|, \quad$ whenever $\quad T_{n}^{(k)}\left(x_{i}\right)=0, \quad k=0, \ldots, n-1$,
hold with equalities only for $p= \pm T_{n}$.
Lemma 2 concerns Gaussian and generalized Lobatto quadrature formulae associated with the Gegenbauer weight functions $\omega_{\lambda}(x):=$ $\left(1-x^{2}\right)^{i-1 / 2}$ for nonnegative integer values of λ. Let $C_{i}^{\lambda}, n=0,1, \ldots$; $\lambda>-1 / 2$, be the Gegenbauer polynomials, orthogonal on $[-1,1]$ with respect to ω_{λ}, and let $x_{i, n}^{(\lambda)}, i=1, \ldots, n$, be the zeros of C_{n}^{λ}. By $\mu_{i, n}^{(\lambda)}$ we mean the Cotes numbers of the Gaussian quadrature formula

$$
\int_{-1}^{1} f(x) \omega_{\lambda}(x) d x \approx \sum_{i=1}^{n} \mu_{i, n}^{(\lambda)} f\left(x_{i, n}^{(\lambda)}\right)
$$

associated with ω_{λ}, which has the algebraic degree of precision $2 n-1$.
For every pair of natural numbers l and n there exists a unique quadrature rule of the form

$$
\begin{aligned}
\int_{-1}^{1} f(x) \omega_{\lambda}(x) d x \approx & \sum_{j=0}^{l-1} a_{j}(\lambda, l, n)\left(f^{(j)}(-1)+(-1)^{j} f^{(j)}(1)\right) \\
& +\sum_{i=1}^{n} \mu_{i}(\lambda, l, n) f\left(x_{i}\right) \\
= & Q(f ; \lambda, l, n)
\end{aligned}
$$

which is precise for every polynomial of degree $2 n+2 l-1$. It is called the generalized Lobatto quadrature formula. It is easily seen that $a_{j}(\lambda, l, n)>0$ and

$$
\begin{equation*}
\mu_{i}(\lambda, l, n)=\left(1-x_{i}^{2}\right)^{-l} \mu_{i, n}^{(i+l)}>0 . \tag{7}
\end{equation*}
$$

The nodes of $Q(f ; \lambda, l, n)$ are located at the zeros of $C_{n}^{\lambda+l} ;$ i.e.,

$$
\begin{equation*}
x_{i}=x_{i, n}^{(\lambda+1)}, \quad i=1, \ldots, n \tag{8}
\end{equation*}
$$

Lemma 2. For any given n and $k, 0 \leqslant k \leqslant n$, let $\xi_{i, n}^{(k)}, i=1, \ldots, n-k$, be the zeros of $T_{n}^{(k)}$. Then the quadrature formulae

$$
\begin{align*}
\int_{-1}^{1} f(x) \omega_{k}(x) d x \approx & \sum_{i=1}^{n-k} \mu_{i, n-k}^{(k)} f\left(\xi_{i, n}^{(k)}\right), \quad 0 \leqslant k \leqslant n-1 \tag{9}\\
\int_{-1}^{1} f(x) \omega_{k}(x) d x \approx & a_{0}(k, 1, n-k-1)(f(-1)+f(1)) \\
& +\sum_{i=1}^{n-k-1} \mu_{i}(k, 1, n-k-1) f\left(\xi_{i, n}^{(k+1)}\right), \quad 0 \leqslant k \leqslant n-2 \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\int_{-1}^{1} f(x) \omega_{k}(x) d x \approx & a_{0}(k, 2, n-k-2)(f(-1)+f(1)) \\
& +a_{1}(k, 2, n-k-2)\left(f^{\prime}(-1)-f^{\prime}(1)\right) \\
& +\sum_{i=1}^{n-k-2} \mu_{i}(k, 2, n-k-2) f\left(\xi_{i, n}^{(k+2)}\right), \quad 0 \leqslant k \leqslant n-3 \tag{11}
\end{align*}
$$

have algebraic degree of precision $2 n-2 k-1$. Moreover,

$$
\begin{equation*}
a_{0}(k, 1, n-k-1)=2^{2 k-1}(2 k+1) \Gamma^{2}(k+1 / 2) \frac{(n-k-1)!}{(n+k)!} \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
a_{1}(k, 2, n-k-2)= & 2^{2 k}(2 k+3) \Gamma^{2}\left(k+\frac{3}{2}\right) \frac{(n-k-2)!}{(n+k+1)!} \tag{13}\\
a_{0}(k, 2, n-k-2)= & \frac{a_{1}(k, 2, n-k-2)}{2 k+1} \\
& \times\left(\frac{2\left(n^{2}-(k+2)^{2}\right)(2 k+3)}{2 k+5}+4(k+1)\right) \tag{14}
\end{align*}
$$

Proof. It is well known that $T_{n}, n=0,1, \ldots$, are orthogonal on $[-1,1]$ with respect to $\omega_{0}(x)=\left(1-x^{2}\right)^{-1 / 2}$. Hence $T_{n}(x)=c_{1} C_{n}^{0}(x)$ (here and in what follows by c_{i} we mean nonzero constants). On the other hand [5, Chap. 4.7],

$$
\frac{d}{d x} C_{n}^{\lambda}(x)=c_{2} C_{n-1}^{i+1}(x)
$$

and then

$$
\frac{d^{k}}{d x^{k}} C_{n}^{\lambda}(x)=c_{3} C_{n-k}^{\lambda+k}(x) .
$$

Applying the latter for $\lambda=0$ we get $T_{n}^{(k)}(x)=c_{4} C_{n-k}^{k}(x)$, which yields

$$
\begin{equation*}
\xi_{t, n}^{(k)}=x_{i, n-k}^{(k)}, \quad i=1, \ldots, n-k \tag{15}
\end{equation*}
$$

Therefore, $\xi_{i, n}^{(k)}, i=1, \ldots, n-k$, are the nodes of the Gaussian quadrature with $n-k$ nodes associated with ω_{k}.

Taking into account the relation (8) between the nodes of the Gaussian and Lobatto's rules and applying (15) for $k+1$ we conclude that Lobatto's formula associated with ω_{k} has $\xi_{i, n}^{(k+1)}$ for its inside nodes. Thus (10) coincides with $Q(f ; k, 1, n-k-1)$. Similarly, the inside nodes of $Q(f ; k, 2, n-k-2)$ are the zeros $\xi_{i, n}^{(k+2)}, i=1, \ldots, n-k-2$, of $T_{n}^{(k+2)}$.
Explicit expressions for the coefficients a_{t-1} and a_{t-2} are given by Maskell and Sack [4, (3.9), (3.10)] even for generalized Lobato quadrature formulae associated with Jacobi weight functions.

Lemma 3. For any positive integer n we have

$$
\begin{array}{r}
\int_{-1}^{1}\left[T_{n}^{(k+1)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x=\frac{\pi n^{2}}{2 k+1} \frac{(n+k)!}{(n-k-1)!}, \\
k=0, \ldots, n-1, \tag{16}
\end{array}
$$

and

$$
\begin{align*}
& \int_{-1}^{1}\left[T_{n}^{(k+2)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x \\
& =\frac{2 \pi n^{2}}{(2 k+1)(2 k+3)} \frac{(n+k+1)!}{(n-k-2)!}\left(\frac{n^{2}-(k+2)^{2}}{2 k+5}+k+1\right), \\
& \quad k=0, \ldots, n-2 . \tag{17}
\end{align*}
$$

Proof. Lobatto's formula (10) is precise for $f=\left[T_{n}^{(k+1)}\right]^{2}$. Hence by means of (5) and (12) we get

$$
\begin{aligned}
\int_{-1}^{1} & {\left[T_{n}^{(k+1)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x } \\
& =2 a_{0}(k, 1, n-k-1)\left[T_{n}^{(k+1)}(1)\right]^{2} \\
& =2^{2 k}(2 k+1) \Gamma^{2}\left(k+\frac{1}{2}\right) \frac{(n-k-1)!}{(n+k)!}\left[\frac{n^{2}\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-k^{2}\right)}{1.3 \cdots(2 k+1)}\right]^{2} .
\end{aligned}
$$

Using the recurrence relation for the gamma function and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ we obtain (16).

In order to establish (17) we apply (11) to $f=\left[T_{n}^{(k+2)}\right]^{2}$:

$$
\begin{aligned}
\int_{-1}^{1}[& \left.T_{n}^{(k+2)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x \\
= & 2 a_{0}(k, 2, n-k-2)\left[T_{n}^{(k+2)}(1)\right]^{2} \\
& +2 a_{1}(k, 2, n-k-2)\left[T_{n}^{(k+2)}(-1) T_{n}^{(k+3)}(-1)\right. \\
& \left.-T_{n}^{(k+2)}(1) T_{n}^{(k+3)}(1)\right] \\
= & 2 a_{0}(k, 2, n-k-2)\left[T_{n}^{(k+2)}(1)\right]^{2} \\
& -4 a_{1}(k, 2, n-k-2) T_{n}^{(k+2)}(1) T_{n}^{(k+3)}(1) .
\end{aligned}
$$

From $T_{n}^{(k+3)}(1)=\left(\left(n^{2}-(k+2)^{2}\right) /(2 k+5)\right) T_{n}^{(k+2)}(1)$ and (14) we get

$$
\begin{aligned}
\int_{-1}^{1}[& \left.T_{n}^{(k+2)}(x)\right]^{2}\left(1-x^{2}\right)^{k-1 / 2} d x \\
= & 2 a_{1}(k, 2, n-k-2)\left[T_{n}^{(k+2)}(1)\right]^{2} \\
& \times\left[\frac{1}{2 k+1}\left(\frac{2\left(n^{2}-(k+2)^{2}\right)(2 k+3)}{2 k+5}+4(k+1)\right)-2 \frac{n^{2}-(k+2)^{2}}{2 k+5}\right] \\
= & 8 a_{1}(k, 2, n-k-2)\left[T_{n}^{(k+2)}(1)\right]^{2}\left[\frac{n^{2}-(k+2)^{2}}{(2 k+1)(2 k+5)}+\frac{k+1}{2 k+1}\right] .
\end{aligned}
$$

The formulae (13) and (5) yield (17).
Proof of the theorem. Let $p \in B_{n}$. Then the inequalities (6) are equivalent to

$$
\begin{equation*}
\left|p^{(k+1)}\left(\xi_{i, n}^{(k)}\right)\right| \leqslant\left|T_{n}^{(k+1)}\left(\xi_{i, n}^{(k)}\right)\right|, \quad i=1, \ldots, n-k \tag{18}
\end{equation*}
$$

Since $\left[p^{(k+1)}\right]^{2} \in \pi_{2 n-2 k-2}$, (9) has algebraic degree of precision $2 n-2 k-1$ and the Cotes numbers are positive, then

$$
\begin{aligned}
\int_{-1}^{1}\left[p^{(k+1)}(x)\right]^{2} \omega_{k}(x) d x & =\sum_{i=1}^{n-k} \mu_{i, n-k}^{(k)}\left[p^{(k+1)}\left(\xi_{i, n}^{(k)}\right)\right]^{2} \\
& \leqslant \sum_{i=1}^{n-k} \mu_{i, n-k}^{(k)}\left[T_{n}^{(k+1)}\left(\xi_{i, n}^{(k)}\right)\right]^{2} \\
& =\int_{-1}^{1}\left[T_{n}^{(k+1)}(x)\right]^{2} \omega_{k}(x) d x .
\end{aligned}
$$

Now inequalities (3) follow from (16).

The inequality

$$
\int_{-1}^{1}\left[p^{(k+2)}(x)\right]^{2} \omega_{k}(x) d x \leqslant \int_{-1}^{1}\left[T_{n}^{(k+2)}(x)\right]^{2} \omega_{k}(x) d x, \quad p \in B_{n}
$$

can be established in a similar way. One applies (10) to $\left[p^{(k+2)}\right]^{2}$ and then, having in mind (7) and (12), use (18) for $k+1$ and (5) for $k+2$, respectively.

Acknowledgment

The author thanks Professor Borisloav Bojanov who showed me how to prove the inequality (3) for the case $k=0$ using (6) and (9).

References

1. B. D. Bojanov, An extension of the Markov inequality, J. Approx. Theory 35 (1982), 181-190.
2. R. J. Duffin and A. C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528.
3. V. A. Markov, On functions least deviating from zero on a given interval St. Petersburg, 1892 [Russian], reprinted in Über Polynome, die in einem gegebenen Intervall möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213-258.
4. S. J. Maskell and R. A. Sack, Generalized Lobatto quadrature formulas for contour integrals, in "Studies in Numerical Analysis," pp. 295-310, Academic Press, London/New York, 1974.
5. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. XXIII, 4th ed., Amer. Math. Soc.. Providence, RI, 1975.
6. A. K. Varma. On some extremal properties of algebraic polynomials, J. Approx. Theory 69 (1992), 48-54.

[^0]: * Research supported by the Bulgarian Ministry of Science under Grant MM-414 and The Royal Society Postdoctoral Fellowship Programme.
 ${ }^{\text {' On }}$ On leave from the Department of Mathematics, Technical University of Rousse, Rousse 7017, Bulgaria.

